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Chapter 1

Introduction

Sudoku is puzzle solving game that originated in Japan. Nowadays it enjoys worldwide popular-
ity. It appears regularly on newspapers and people with a keen interest in puzzle solving find it
satisfying. There exists many techniques of solving Sudoku puzzles. We have regarded the Su-
doku puzzle as a Constraint Satisfaction Problem and solved it using Constraint programming.
This thesis explores different solving models and their comparative efficiency.

1.1 Background and Motivation

For the past few decades Sudoku has gained increasing popularity. It has appeared in various
media such as newspapers and websites. Regular competitions are being held on Sudoku solv-
ing. Different variations such as X-Sudoku, Killer Sudoku, Jigsaw Sudoku are also gaining
popularity. Different algorithms exists that solve Sudoku problem. Backtrack and Rule-based
algorithms are some examples of that. However we have found out that Sudoku as a Constraint
Satisfaction Problem has more grounds to cover. We have found only one type of existing
model that solves Sudoku puzzles using All Different constraint. So we have tried to develop
new models and compare those to already existing ones. Also Sudoku board has the prop-
erty that however we rotate the board it still will have same solution. So we tried to explore
this property using our models and tried to find out how the ordering of constraints affects the
efficiency.

1.2 Objective

In this thesis our main goal was to find another model other than All-Different that solves the
puzzle regarding it as a Constraint Satisfaction Problem. Implementing this model with different

1



1.3. FUNDAMENTALS OF SUDOKU: 2

constraints we tried to find the comparative efficiency and the reason behind it. Also another of
our objective was to explore the rotational property of Sudoku puzzle which means that if we
rotate the board right or left, the resolution time changes. Rotation of the board basically means
that the order of the constraints changes. We operated on different data and tried to find out how
their resolution time changes based on different rotation.

1.3 Fundamentals Of Sudoku:

A Sudoku game consists of a 9x9 grid of numbers, where each number belongs to the range
1-9. Initially a subset of the grid is revealed and the goal is to fill the remaining grid with valid
numbers. The grid is divided into 9 blocks of size 3x3. Sudoku has only one rule and that is
that all regions, that is rows, columns, and blocks, contains the numbers 1-9 exactly once. In
order to be regarded as a proper Sudoku puzzle it is also required that a unique solution exists,
a property which can be determined by solving for all possible solutions.

1.4 Computational Perspective:

Sudoku solving is a research area in computer science and mathematics, with areas such as
solving, puzzle difficulty rating and puzzle generation. The problem of solving n2×n2 Sudoku
puzzles is NP-complete. While being theoretically interesting as an result, it has also moti-
vated research into heuristics, resulting in a wide range of available solving methods. Some of
the existing solving algorithms are backtrack, rule-based, cultural genetic with variations and
Boltzmann machines.

Using all-different constraint for the solving model, the solver solves the problem by first taking
the variables with single value, the clues, and reduce the domain of the candidates. It performs
this repeatedly until all variables has single value.

In the model we implemented using count constraint. The approach is to take each row block
and row column and assigning values in such a way so that each value is assigned to exactly
two variables.

The main computational concern is the number of times the solver backtracks in each model.
Reduction of backtracks result in a better resolution time.



Chapter 2

Problem Formulation

We take a Sudoku puzzle as a problem and solve it using Constraint Programming. We know
that Sudoku is a 9 by 9 board. It has three types of group of cells. In each group every single
cell must have different values. At the start, the board will have some cells with values and
some empty cells. The goal is to fill the empty cells with appropriate values so each group can
maintain all-different property. In order to correctly refer to the appropriate terms we define
those as follows.

2.1 Sudoku Definitions:

Board: It is the whole 9 by 9 grid of the Sudoku puzzle.
Cell: Every square of the Sudoku board. There are 81 cells in total.
Row: Each group of 9 horizontal cells.
Column: Each group of 9 vertical cells.
Block: Each 3 by 3 grid of the board. They work same as the rows and columns which means
every cell of the block must have different values.
Region: Each row, column and block is a region.
Row Column: This is the combination of each row with each of its intersecting columns. Ev-
ery row is taken and merged with each of the columns. The intersecting cell is counted twice.
Once for the and once for the column. So each row column has 18 cells in total. And there are
81 row columns. This Row Column is formed because it is needed in the second model.
Row Block: This is another type of region that is needed in the second model. Here each row
is merged with each of its intersecting blocks. Each row intersects three blocks. So there are
27 row blocks. In this case each row block intersection has three intersecting cells. As before,
each of the intersecting cells is counted twice. Once for the row and once for block. So each
row block has 18 cells in total.

3
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Candidate: A candidate is an empty square in the board. Each Sudoku board has some can-
didates and the goal of the puzzle is to fill those candidates with appropriate value so that it
maintains all-different property.
Clue: The squares in the board that have single values assigned to them at the start of the game
are known as clues. They are unchangeable and they will be used to gain knowledge about fill-
ing up the candidates. It should be noted that only filled squares at the beginning are considered
clues. Other squares that are filled by the solver are not considered clues.

2.2 CSP Definitions:

Variable: Variables have several assignable value. In Sudoku each of the 81 cells of the board
is a variable. Each can a have a set of assignable values.
Domain: The set of values that are assignable to a variable is called its domain. Each candidate
of the Sudoku board has domain size of nine. Where the values are in range of 1 to 9. Whereas
each clue has only the pre-assigned value in its domain.
Constraint: Constraint consists a pair (scope, rel). Where scope means the a tuple of variables
that participate in the constraint. Rel is a relation that defines the values those variables can take
on.
Consistent Assignment: An assignment of values to variable that does not violate any con-
straints.
Complete Assignment: An assignment where each variable has an assignment. Solution to a
Constraint Satisfaction Problem is a consistent, complete assignment.
Partial Assignment: When only some of the variables are assigned it is called a partial assign-
ment.
Unary Constraint: It restricts the value of a single variable. An example is a lakeside house
will have to be of color green.
Binary Constraint: A binary constraint relates two variables. An simple example is if a house
is green then its neighboring house will have to be blue.
Global Constraint: A constraint involving an arbitrary number of variables is called a global
constraint. An example is all-different constraint. We mainly use global constraint for our the-
sis.
All-Different Constraint: The variables on which this constraint is applied, each of those, must
have different values. Since the Sudoku problem is built on this condition so the all-different
constraint is naturally applicable to each of the regions of the board.
Count Constraint: This constraint is implemented by us to build a different solver other than
the all-different one. The constraint is that every value from 1 to 9 must appear exactly twice in
every row column and every row block.
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Backtracking Search: It is a type of depth first search that chooses values one variable at a
time and backtracks when a variable has no legal values left to assign.
Variable Ordering: In backtracking search which variable should be selected next for assign-
ment is an important question. The intuitive idea is to take the variable with the smallest domain
size. It forces the other variables to reduce their domains more effectively. This is known as
Minimum Remaining Value(MRV) heuristic.
Degree Heuristic: An important heuristic for variable ordering that selects the variable that has
the largest number of constraints with other unassigned variables. It reduces the domains of
other related variables effectively.
Value Ordering: For choosing a value for a variable, the value that rules out the fewest number
of choices for other variables is considered first. This is known as Least Constraining Value
heuristic.
Node Consistency: A variable is node consistent if all the values in the all the values in the
variables domain satisfy the variables unary constraints.
Arc Consistency: A variable in CSP is arc consistent if every value in its domain satisfies the
variables binary constraints. More formally, Xi is arc-consistent with respect to another vari-
able Xj if for every value in the current domain Di there is some value in the domain Dj that
satisfies the binary constraint on the arc(Xi, Xj). A network is arc-consistent if every variable
is arc-consistent with every other variable.



Chapter 3

Models

All-different model employs all-different constraint on each of the regions of the board. This
constraint is applied on every row, column and block of the board. Since each of the three types
of region are 9 each, there are in total 27 constraints. These constraints ensure that each cell of
every region will have unique values.

Arc consistency ensures solution of the puzzle in this model. All-different constraint can be
expanded into binary constraints. Because it basically says that Ai 6= Aj for all i,j, i 6= j in
each region.

1 2 3 4 5 6 7 8 9
A 3 2 6
B 9 3 5 1
C 1 8 6 4
D 8 1 2 9
E 7 8
F 6 7 8 2
G 2 6 9 5
H 8 2 3 9
I 5 1 3

Figure 3.1: Unsolved Sudoku puzzle

We consider variable E6 from figure 3.1, the candidate between 2 and 8 in the middle box. From
constraints in the box, we can remove not only 2 and 8 but also 1 and 7 from E6s domain. From
the constraints in its column, we can eliminate 5, 6, 2, 8, 9 and 3. That leaves E6 with a domain
of 4. So we know the answer for E6.

Now we consider variable I6- the square in the bottom middle box surrounded by 1, 3 and 3.
Applying arc consistency in its column, we eliminate 5, 6, 2, 4 (since we have concluded E6
must be 4), 8, 9 and 3. We eliminate 1 by arc consistency with I5, and we are left with only

6



3.1. REGION ORDERED MODEL: 7

1 2 3 4 5 6 7 8 9
A 4 8 3 9 2 1 6 5 7
B 9 6 7 3 4 5 8 2 1
C 2 5 1 8 7 6 4 9 3
D 5 4 8 1 3 2 9 7 6
E 7 2 9 5 6 4 1 3 8
F 1 3 6 7 9 8 2 4 5
G 3 7 2 6 8 9 5 1 4
H 8 1 4 2 5 3 7 6 9
I 6 9 5 4 1 7 3 8 2

Figure 3.2: Solved Sudoku puzzle

the value 7 in domain of I6. Now there are 8 known values in column 6, so arc consistency can
infer that A6 must be 1.

Inference continues along these lines and eventually, the model solves the entire puzzle, that is,
all the variables have their domains reduced to a single value. It is shown in figure 3.2.

3.1 Region Ordered Model:

This model orders the constraints by region. At first the all different constraint is applied on
all the rows of the board. Then the constraint is applied on all the columns of the board. And
at last the constraint is applied on all the blocks. It means first the domain will be reduced by
making the all the rows consistent. Then further domain reduction will occur by constraining
the columns. And at last constraining all the blocks will result in a solution.

3.2 Row-Column-Block Ordered Model

This is the first and most common variant for the Sudoku solver. In this model the all-different
constraint is applied such a way so that the constraint is applied on the first row, column and
blocks first. Then it is applied on the second row, second column and second block. So to say it
means the all different constraint is applied on sequentially on row, column and block and this
is done on each of the row, column and block.
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3.3 Count of Clue Ordered Model:

In order to employ this model, we explore a basic property of Sudoku board and how the domain
reduction works. For each region, row, column or block, domain of a cell is reduced based
upon all the clues of that region. If a candidate contains a value that is a clue in that region,
then applying all-different constraint means that value will be removed from the domain of the
candidate. All different constraint on a region ensures that the domain of each of the candidate
of the region will be reduced by all the clues.

So we can notice that if every cell of a region is a clue then no further work is needed to be
done. If there are eight clues in the region then there is only one candidate. Since eight of the
nine values are assigned to eight of the cells so naturally the domain of the candidate reduces to
one.

So we can deduce that the more clues a region have, the easier it is to reduce the domain of
the candidates of that region. Based on this assumption, we have created our third model. This
model first pre-processes all the rows, blocks and columns of the board. It takes each region
and counts the number of clues in that region. Then it sorts the regions based on the count of
clues in descending order. Then we apply the all-different constraint on all the 81 regions.

Since the regions are in descending order on the count of clues, applying the constraint on the
regions with more clues first means their domains get reduced by a large number.

3.4 All-different-Count Model:

All-different-Count model employs a property of Sudoku to solve the puzzle. In Sudoku board
each row must have a value exactly once. Each column must also have a value exactly once. So
each intersecting row and column must have a value exactly twice. Except for the value in the
intersecting cell of the row and column, which appears exactly once.

Now for the convenience of implementing the constraint, we did not count the intersecting cell.
We make a region called row column which has each of the value of the intersecting row and
column. This means the region has 16 cells excepting the intersecting cell. There are 9 rows
and 9 columns and each of the rows intersect each of the columns. So there are 9 × 9 = 81
row columns in total.

Now we apply the count constraint on these regions. This constraint states that each value
must appear more than once in each region. If the assignment of value is such that the region
has only one or zero cell with that value then we know that it cannot find a solution and the
constraint is failed. If there is assignment of variables in such way so that a value is assigned
to more than one variable then we can further reduce the domain by propagating. Applying
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1 2 3 4 5 6 7 8 9
A 3 2 6
B 9 3 5 1
C 1 8 6 4
D 8 1 2 9
E 7 8
F 6 7 8 2
G 2 6 9 5
H 8 2 3 9
I 5 1 3

Figure 3.3: Row-Column Sudoku puzzle

this constraint does not ensures that each region will have each value exactly twice. It simply
ensures that assignment of a value for only once or zero time will result in failure. If more than
two variables are assigned the same value then the domain reduction is carried out further by
all-different and count constraint on other regions.

So the count constraint being applied on the region ensures that if any assignment on a variable
for a value reduces another variables domain to zero then this assignment is not consistent and
the value will be removed from the variables domain.

This is applied for all the 81 one row columns for all 9 possible values. So there are in total
81× 9 = 729 constraints.

Now this constraint is used alongside the all-different constraint. We run the all-different con-
straint nine times for each row, column and block. We also run the count constraint on 81
regions for nine values. So in this model we impose all-different constraint for each row, col-
umn and block and impose count constraint on 81 regions in a loop from 1 to 9.

We create this model in order to analyze the effect of additional constraint along with the al-
ready existing all-different constraint. We try to find out how the number of backtracks and the
resolution time changes if we add some constraint along with all-different.



Chapter 4

Experiment and Analysis:

In this section multiple results are presented together with a discussion about how the results
could be interpreted.

For the experiments we used two types datasets. One set of data contains 95 Sudoku puzzles
of hard rating. Most of these puzzles requires backtracks. In the case of this dataset, we con-
sider number of backtracks for each model along with resolution time. We try to find out how
the number of backtracks changes with different ordering of constraints and addition of new
constraints.

Another set of data contains 500 Sudoku puzzles. We have collected these from fellow students
working on Sudoku problem generation of different ratings. They are have different ratings of
easy, medium and hard. We run the same tests for this dataset.

Section 4.1 is devoted to presenting how different models perform based on resolution time
for the first dataset. Section 4.2 shows the result of the tests for second dataset. Section 4.3
shows how the algorithms performs relative to the each other and discusses different aspect of
comparison.

4.1 Time Distributions for Dataset 1:

To get an idea of how each algorithm performs it is suitable to plot solving times in a histogram.
Another way of displaying the performance is to sort the solving times and plot puzzle index
versus solving time. Both of these are of interest however since they can reveal different things
about the algorithms performance.

10
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4.1.1 Region Ordered Model:

After testing the row-column-block ordered model on the 95 hard puzzle dataset, it had a mean
solving time of 8.71 millisecond. its standard deviation was 6.512 milliseconds.

Figure 4.1: Histogram of Resolution time

At first we see from figure 4.1 the histogram for this model. From the histogram we can see
that most of the puzzles had resolution time between 3 to 13 milliseconds. As was the case
for the first model. But we can observe variation in this model. Although most of the puzzles
are in the same range, for this model most of the puzzle lies within 4 milliseconds and as the
resolution time increases number of puzzles decreases. We can also observe that while the first
model had the maximum resolution time close to 40 milliseconds, this model does need more
than 31 milliseconds.

Figure 4.2: Sorted Resolution time

We can see from figure 4.2 the resolution time against puzzle indices sorted on resolution time.
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We can see from this model that resolution time starts to increase exponentially after around 13
milliseconds. We can see that only a few problems show high amount of resolution time with
all the other puzzles being closer.

Figure 4.3: Sorted Backtrack Count

We see the same result in figure 4.3 where sorted puzzle indices are plotted against their back-
tracking time. We see that number of backtracks increases exponentially after it crosses 100
backtracking count. Whereas in the previous model backtrack increased exponentially near 75.
Also we can notice that it has a bit sideways curve near 180 backtrack which was not present
in the previous model. This model shows a more stable and relatively better result than the first
one for the hard dataset.

4.1.2 Row-Column-Block Ordered Model:

The region-ordered solver had a mean solving time of 8.863 milliseconds with a standard devi-
ation of 6.946 milliseconds. It solved all 95 hard puzzles that was in the first dataset used for
testing.



4.1. TIME DISTRIBUTIONS FOR DATASET 1: 13

Figure 4.4: Histogram of Resolution time of Row-Column-Block Ordered model

Figure 4.4 is a histogram on a with the resolution time shown in milliseconds that shows how
the region ordered model performed over all test puzzles. It is observable that there is a quite
small time interval at which most puzzles are solved. This is observed from the histogram. Most
of the solved puzzles resolution time lies within 3 to 13 milliseconds.

Figure 4.5: Sorted Resolution time of Row-Column-Block Ordered Model

Another way to visualize the result is shown in figure 4.5. The figure have plotted the puzzle
indices sorted after solving time against their resolution times. Note that the y-axis is the solving
time in milliseconds. As in figure 4.1, only a few puzzles had relatively high solving times.
This picture also more clearly illustrates the idea explored above. Namely that the algorithm
will increase its solving times fast at a certain point. From that statement, it can be concluded
that only a small portion of all Sudoku puzzles are difficult, in the sense that the constraints that
this model uses in this particular order is enough.
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Figure 4.6: Sorted Backtrack Count of Row-Column-Block Ordered Model

In figure 4.6 the number of backtracks needed is shown against the puzzle indices after sorting
them on the number of backtracks. The y-axis is the number of backtracks and the x-axis is the
puzzle index. We can see from this graph that most of the puzzles take backtracks lower than
50. After the backtrack count crosses 75, number of backtracks rises exponentially for the last
10-15 puzzles. Which is consistent with our previous figures where the resolution time rises
exponentially for 10-15 puzzles.

4.1.3 Count of Clue Ordered Model:

This model employs the sorted region on number of clues technique. It has mean resolution
time 8.36 milliseconds and standard deviation of 6.445 milliseconds.

Figure 4.7: Histogram of Count of Clue Ordered Model

n figure 4.7 the histogram is shown. We can see most of the value lies within 12 milliseconds
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with the most puzzle being solved between the range of 3 to 4 milliseconds. This model hardly
have very few puzzles being solved after 13 milliseconds. But the frequency suddenly rises a
bit after 30 milliseconds.

Figure 4.8: Sorted Resolution time of Count of Clue Ordered Model

From figure 4.8 where the sorted puzzle indices are plotted against the resolution time we see
the resolution time rises exponentially after 12 milliseconds. Also we notice there is a slight
curve at the top of the graph, which indicates the frequency rises a bit at the highest range.

Figure 4.9: Sorted Backtrack Count of Count of Clue Ordered Model

From figure 4.9 we see the relation between backtrack count and puzzle indices. We see that it
has a gradual increasing shape with less variance than the previous two. It start rising exponen-
tially around 100 backtrack count and the highest number of backtracks are over 300.
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4.1.4 All-Different-Count model:

Figure 4.10: Histogram of All-Different-Count Model

For the model in which we implement additional count constraint alongside all-different, we
can see that it has higher frequency of values within 12 milliseconds with the most being solved
within the range of 4 to 5 milliseconds. Although it has fewer frequency, after that some of the
problems it solves near 40 milliseconds. Which means it takes a bit more time for the harder
problem than previous two models. It has a mean resolution time of 8.619 milliseconds and
standard deviation of 6.407 milliseconds.

Figure 4.11: Sorted Resolution Time of All-Different-Count Model

If we analyze the resolution time in figure 4.11 we see that it has less variation while it rises
towards 14 milliseconds and after that it rises exponentially. Also we can see it crosses the 5
milliseconds threshold near 31st index, which is better than the previous model which crosses
the 5 milliseconds index near 36th index.
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Figure 4.12: Sorted Backtrack Count of All-Different-Count Model

In figure 4.12 we see the backtrack graph and it shows that it starts to rise exponentially after
100 backtracks. And the variation is relatively small.

4.2 Time Distribution for Dataset 2

We take the same approach while performing the tests on dataset 2. We take the histogram,
resolution time graph and backtrack count graph and analyze each dataset.

4.2.1 Region Ordered Model:

The row-column-block ordered solver had a mean solving time of 2.541 milliseconds. It had a
standard deviation of 1.121 milliseconds.

Figure 4.13: Histogram of Region Ordered Model
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From figure 4.13 we can observe that most of the problems are solved within 2 and 3 millisec-
onds. The frequency gradually decreases as resolution time increases with very few puzzle
after 6 seconds. The difference of this model with the previous one is that it has same number
of puzzles solved in the 2 and 3 milliseconds range, whereas the previous one has more in the 2
milliseconds range in 3 milliseconds range.

Figure 4.14: Sorted Resolution Time of Region Ordered Model

Figure 4.14 shows the result with the resolution time being plotted against the puzzle indices.
We can see from the figure that close to 470 problems are solved under just 5 milliseconds.
And the resolution time increases by small amount till that. But after 5 milliseconds it increases
exponentially. We can see the difference with the previous model that the previous model solved
the highest difficulty puzzle in close to 25 milliseconds, but this models most computationally
expensive puzzle takes only about 9 millisecond to solve.
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Figure 4.15: Sorted Backtrack Count of Region Ordered Model

In figure 4.15 the number of backtracks needed is shown against the puzzle indices after sorting
them on the number of backtracks. We can see that the number of backtracks increases stepwise
and with small steps until 15 milliseconds. We can see the highest number of backtrack is close
to 40. For the previous model it was close to 45.

4.2.2 Row-Column-Block Ordered Model:

The region-ordered solver had a mean solving time of 2.560 milliseconds. It had a standard
deviation of 1.583 milliseconds.

Figure 4.16: Histogram of Row-Column-Block Ordered Model

Figure 4.16 that shows how the region ordered model performed over all test puzzles. We
can observe that most of the problems are solved within 2 and 3 milliseconds with the range
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2 millisecond having the most puzzle. The frequency gradually decreases as resolution time
increases with very few puzzle after 6 seconds.

Figure 4.17: Sorted Resolution Time of Row-Column-Block Ordered Model

Figure 4.17 shows the result with the resolution time being plotted against the puzzle indices.
We can see from the figure that close to 470 problems are solved under just 5 milliseconds.
And the resolution time increases by small amount till that. But after 5 milliseconds it increases
exponentially.

Figure 4.18: Sorted Backtrack Count of Row-Column-Block Ordered Model

In figure 4.18 the number of backtracks needed is shown against the puzzle indices after sorting
them on the number of backtracks. We can see that the number of backtracks increases stepwise
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and with small steps until 15 milliseconds. The reason this count backtrack increases stepwise
because the problems were generated by predetermining specific numbers of backtracks. We
can see the highest number of backtrack is close to 45. And most of the puzzles take backtracks
lower than 12.

4.2.3 Count of Clue Ordered Model:

This model employs the sorted region on number of clues technique. It has a mean solving time
of 2.437 milliseconds. It had a standard deviation of .981 milliseconds.

Figure 4.19: Histogram of Count of Clue Ordered Model

From figure 4.19 we can observe that most of the problems are solved within 2 and 3 mil-
liseconds as before. Its difference with the previous models is that it solves more puzzle in 3
milliseconds than in 2 milliseconds.

Figure 4.20: Sorted Resolution Time of Count of Clue Ordered Model
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From figure 4.20 we can see that close to 393 puzzles are within 3 milliseconds threshold which
is relatively better than the previous model. Also it solves the most computationally expensive
problem close to 8 milliseconds, which is better than the previous models.

Figure 4.21: Sorted Backtrack Count of Count of Clue Ordered Model

In figure 4.21 the number of backtracks needed is shown against the puzzle indices after sorting
them on the number of backtracks. We can see that the number of backtracks increases stepwise
and with small steps until 15 milliseconds. We can see the highest number of backtrack is close
to 40.

4.2.4 All-Different-Count model:

Figure 4.22: Histogram of All Different Count Model

From figure 4.22 we can observe that the proportion of problems solved within 3 milliseconds
is more than the proportion of problems solved within 3 milliseconds, while other ranges con-
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tributing smaller amounts. Its mean resolution time is 2.469 milliseconds and standard deviation
is .980 milliseconds.

Figure 4.23: Resolution Time of All Different Count Model

From figure 4.23 we can see that it puzzles resolution time starts to increase exponentially within
5 milliseconds. But it solves the most computationally expensive problem under 8 milliseconds,
which is the best among the models.

Figure 4.24: Backtrack Count of All Different Count Model

In figure 4.24 the number of backtracks needed is shown against the puzzle indices. It shows
properties like the previous models.
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4.3 Comparison between Models

4.3.1 95 Hard Puzzle Dataset

Avg Resolution Time Avg Backtrack Count Std Dev of Time Std Dev of Backtrack
Region Ordered Model 8.710 52.010 6.512 64.063

Row-Column-Block Ordered Mode 8.863 52.557 6.946 66.565
Count of Clue Ordered Model 8.360 50.515 6.945 65.152

All-Different-Count model 8.619 49.787 6.407 61.168

Table 4.1: Comparison between different models for hard dataset

From the table we can see that in terms of average resolution time, count-of-clue ordered model
is the best with the lowest resolution time of 8.360 milliseconds. The all-different-count model
that employs cont constraint along with all-different constraint is the second best. The region
ordered model comes third and row-column-block ordered model comes last in terms of average
resolution time. So we can see that ordering constraints in terms of count of clue makes for the
best model in terms of average resolution time.

Now if we consider the standard deviation of resolution time we can see that model 4 has the
lowest standard deviation of 6.407. Then comes model 3, then 1 and then 4.
If we think in terms of backtracking count, we can see that model 4 need the lowest number of
average backtracks. Model 3 need lesser than the other two models. And model 2 needs the
most. So we can say that adding count constraint with the all-different constraint reduces the
number of backtracks best.

Standard deviation of backtracks is the lowest in model 4. Model 1 comes in second. Model 2
deviates the most.

4.3.2 5000 Puzzle Dataset:

Avg Resolution Time Avg Backtrack Count Std Dev of Time Std Dev of Backtrack
Region Ordered Model 2.54 8.012 1.122 5.941

Row-Column-Block Ordered Mode 2.56 8.030 1.583 5.993
Count of Clue Ordered Model 2.437 8.022 .980 6.038

All-Different-Count model 2.469 8.070 .900 5.980

Table 4.2: Comparison between different models for 5000 Easy Dataset

From this table we see that the average resolution time of model 3 is the lowest. As was the
case for 95 hard puzzle dataset. Model 4 comes in second in terms of low average resolution
time. Among the other two model 1 performs better than model 2.
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The standard deviation of resolution time for this second dataset shows us that model 4 deviates
the lowest. But the standard deviation of model 3 is pretty close. Among the other two models
model 2 deviates more than model 1.

Now for the case of backtrack count we can see that model 4 needs the lowest number of
backtracks in average. Model 1 whose average number of backtracks are 8.021 is second. But
model 3 is almost equal with average number of backtracks being 8.22. Model 3 need the most
average number of backtracks.

The standard deviation of backtrack is lowest in model 1 for this dataset. Model 4 has the
second lowest standard deviation. Among model 2 and 3, model deviates less.

So from both of the dataset we can see that average resolution time, standard deviation of
resolution time and average backtrack count is consistent among the datasets. For the case of
standard deviation of backtrack count model 1 becomes better than model 4 in second dataset.
Otherwise all other comparisons are consistent.



Chapter 5

Conclusion

All different is a common constraint for solving Sudoku puzzle. The common approach taken to
solve Sudoku puzzle using all-different constraint is that it works on the row, column and blocks
serially or it works on the regions serially. Which the cases for model 2 and 1 respectively. In
this thesis we tried to take different approach other than these two. One approach was to count
the number of clues in each region and sort the regions based on the counts in descending order.
Then we imposed the constraint on the regions in sorted order. Another of the approach was to
add another constraint with the all-different constraint and see if it works better or not.

From the analysis and comparison of the four models on two different datasets, we can see that
these two approaches have positive result over the common approaches.

The count-clue-ordered model reduces the average resolution time the most. In terms of aver-
age resolution time both of the approaches, model 3 and model 4 shows reduction of average
resolution time over model 1 and 2. Ordering the constraints so as to they work first on the
regions with most clues seems to give the best result. The addition of count constraint with all-
different model also gives better average resolution time than the other two model. So in terms
of average resolution time we can say that those two approaches were better than the common
ones.

While model 3 has the lowest average resolution time, model 4 deviates the least. And in this
case too, the deviation of model 3 and 4 is less than model 1 and 2. So we can say that both clue-
count-order and all-different-count model work better than model 1 and 2 in terms of average
resolution time and standard deviation of resolution time.

In case of average number of backtracks, all four models are pretty close. Among these, model
4, the clue-count-order model has the least average number of backtracks. In this case the
average number of backtracks for model 3 is slightly higher than model 4, but it still performs
better than the other two models.

26
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In case of standard deviation of backtracks model 4 is better in one dataset and model 1 is better
in the other one. In both cases model 3 deviates more than model 1. So in terms of deviation
model 3 and 4 does not bring any noticeable improvement.

In conclusion we can say that the ordering of constraints in count-clue-order model results in
better average resolution time. And adding count constraint along with the all-different con-
straint gives us better average backtrack count. Both of these models give better result than
row-column-block order and region-order models in terms of average resolution time and aver-
age backtrack count.
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Appendix A

Algorithms

A.1 Sample Algorithm

In Algorithm 1 we show how to calcute y = xn.

Algorithm 1 Calculate y = xn

Require: n ≥ 0 ∨ x 6= 0
Ensure: y = xn

y ← 1
if n < 0 then
X ← 1/x
N ← −n

else
X ← x
N ← n

end if
while N 6= 0 do

if N is even then
X ← X ×X
N ← N/2

else {N is odd}
y ← y ×X
N ← N − 1

end if
end while

29



Appendix B

Codes

B.1 Sample Code

We use this code to find out. . .

1 #include <stdio.h>

2 int Fibonacci(int);

3

4 main()

5 {

6 int n, i = 0, c;

7

8 printf("Enter the value of n: ");

9 scanf("%d",&n);

10

11 printf("\nFibonacci series\n");

12

13 for (c = 1 ; c <= n ; c++)

14 {

15 printf("%d\n", Fibonacci(i));

16 i++;

17 }

18

19 return 0;

20 }

21

22 int Fibonacci(int n)

23 {

30
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24 if (n == 0)

25 return 0;

26 else if (n == 1)

27 return 1;

28 else

29 return (Fibonacci(n-1) + Fibonacci(n-2));

30 }

B.2 Another Sample Code

1 SELECT associations2.object_id, associations2.term_id,

2 associations2.cat_ID, associations2.term_taxonomy_id

3 FROM (SELECT objects_tags.object_id, objects_tags.term_id,

4 wp_cb_tags2cats.cat_ID, categories.term_taxonomy_id

5 FROM (SELECT wp_term_relationships.object_id,

6 wp_term_taxonomy.term_id, wp_term_taxonomy.term_taxonomy_id

7 FROM wp_term_relationships

8 LEFT JOIN wp_term_taxonomy ON

9 wp_term_relationships.term_taxonomy_id =

10 wp_term_taxonomy.term_taxonomy_id

11 ORDER BY object_id ASC, term_id ASC)

12 AS objects_tags

13 LEFT JOIN wp_cb_tags2cats ON objects_tags.term_id =

14 wp_cb_tags2cats.tag_ID

15 LEFT JOIN (SELECT wp_term_relationships.object_id,

16 wp_term_taxonomy.term_id as cat_ID,

17 wp_term_taxonomy.term_taxonomy_id

18 FROM wp_term_relationships

19 LEFT JOIN wp_term_taxonomy ON

20 wp_term_relationships.term_taxonomy_id =

21 wp_term_taxonomy.term_taxonomy_id

22 WHERE wp_term_taxonomy.taxonomy = ’category’

23 GROUP BY object_id, cat_ID, term_taxonomy_id

24 ORDER BY object_id, cat_ID, term_taxonomy_id)

25 AS categories on wp_cb_tags2cats.cat_ID = categories.term_id

26 WHERE objects_tags.term_id = wp_cb_tags2cats.tag_ID

27 GROUP BY object_id, term_id, cat_ID, term_taxonomy_id

28 ORDER BY object_id ASC, term_id ASC, cat_ID ASC)

29 AS associations2

30 LEFT JOIN categories ON associations2.object_id =
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31 categories.object_id

32 WHERE associations2.cat_ID <> categories.cat_ID

33 GROUP BY object_id, term_id, cat_ID, term_taxonomy_id

34 ORDER BY object_id, term_id, cat_ID, term_taxonomy_id
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